Российская газета. александр гребенщиков. аватар, я тебя знаю! Конструкция "Бурана": бортовые системы D принтеры для создания в космосе крупногабаритных конструкций

Московский Авиационный Институт

(Национальный исследовательский университет)

Технология изготовления деталей

Реферат на тему:

Космические манипуляторы

Выполнил ст. гр. 06-314

Зверев М.А.

Проверил:

Береговой В.Г.

Москва 2013

Манипуляторы модулей ДОК «Мир»

На долговременном орбитальном комплексе (станции) (ДОК) «Мир» в составе модулей использовались манипуляторы, как на сменных модулях, так и на базовом блоке. Эти манипуляторы отличались по своим задачам и исполнению.

На модулях «Квант-2», «Спектр», «Кристалл» и «Природа» на их внешних поверхностях вблизи основного стыковочного узла был смонтирован манипулятор. Основная задача этого М заключалась в том, чтобы после стыковки с базовым блоком (к продольному стыковочному узлу ПхО) произвести перестыковку модуля на другой стыковочный узел, ось которого лежала в плоскостях стабилизации I-III. II-IV. Этот же манипулятор использовался для перестыковки модулей в процессе эксплуатации комплекса. Для этих операций на внешней сферической поверхности ПхО между плоскостями стабилизации под сферическим углом 45 0 были установлены 2 специальных стыковочных узла, к которым и пристыковывался манипулятор модуля. После стыковки с этим узлом модуль отстыковывался от продольного стыковочного узла и перемещался к ближайшему свободному «перпендикулярному» стыковочному узлу, условно к I- II или III-IV. Этот манипулятор следует отнести к классу транспортных (транспортирующих), работающих по программе «точка-точка».

Манипуляторы базового блока («Стрела»)

К классу транспортирующих манипуляторов можно отнести и «грузовую систему» «Стрела», установленную на базовом блоке комплекса. Данная система предназначалась для транспортировки грузов из модулей на поверхность базового блока. После того, как была сформирована конструкция ДОК в виде «звезды», все выходные люки ПхО оказались заняты и необходимое оборудование можно было, доставлять только из вторых торцевых люков модулей. Для облегчения работы экипажа на поверхности ДОК и были установлены две «Стрелы», на II и IV плоскостях стабилизации на местах крепления головного обтекателя. На Рис.1. перечислены работы, при выполнении которых потребовалась помощь данного манипулятора.

Схема и фотография «Стрелы» представлены на Рис.1.

Отечественные механические манипуляторы «Стрела », выполненные в виде телескопической штанги разворачиваемой вокруг двух осей, используют на МКС для перемещения космонавтов по внешней поверхности станции. Краны установлены на модуле "Пирс" <#"654688.files/image004.gif"> <#"654688.files/image005.gif">

Декстр выглядит как безголовое туловище, оснащенное двумя крайне подвижными руками длиной в 3,35 м. Трёх с половиной метровый корпус имеет ось вращения в «талии». Корпус с одного конца оборудован захватывающим приспособлением, за который его может ухватить Канадарм 2 и перенести SPDM к любому орбитальному заменяемому элементу (англ. ORU) на станции. С другого конца корпуса имеется исполнительный орган робота, фактически идентичный органу Канадрам», так что SPDM может быть закреплён на захватывающих приспособлениях МКС или может использоваться для того чтобы расширять функциональность Кандарм2.

Обе руки SPDM имеют семь суставов, что даёт им такую же гибкость, как у Канадарм 2, в сочетании с большей точностью. В конце каждой руки находится система, названная Orbital Replacement Unit/Tool Changeout Mechanism (OTCM) (по русским: Орбитальный заменяемый элемент/Механизм замены инструментов. В неё входят встроенные цепкие захваты, выдвижная головка, монохромная телевизионная камера, подсветка, и разделяемый соединитель, который обеспечивает питание, обмен данными и видеонаблюдение за полезным грузом.

Внизу корпуса Декстра находится пара ориентируемых телекамер цветного изображения с подсветкой, платформа для хранения ORU и кобура для инструментов. Кобура оборудована тремя различными инструментами, используемыми для решения различных задач на МКС.

Манипулятор Канадарм

был роботом-манипулятором, изначально предназначенным для использования на борту космического корабля. Canadarm был введён в эксплуатацию в 1975 году и впервые запущен в 1981 году, он был важным техническим развитием в истории пилотируемых космических полетов. Canadarm продемонстрировал потенциальные возможности применения робототехнических устройств в пространстве, а также прочно вошёл в инжиниринг в космических исследованиях. Несколько итераций устройства были изготовлены для использования на борту различных миссий.состоит из длинных петель - рук, контролируемых robotically из кабины. Canadarm официально известен, как поворотная дистанционная система манипулятора (SRM),и она предназначена для астронавтов для перемещения полезной нагрузки в или из космического корабля. Она также может быть использована и для других задач, начиная от ремонта телескопа ” Хаббл ” для сборки Международной Космической Станции (МКС). Второе поколение устройств, ” Canadarm-2″, было установлено на МКС.

Опытно-конструкторские работы по различным аспектам космических полетов, могут заключить договор с агентствами, такими как Национальное управление по аэронавтике и исследованию космического Пространства (НАСА). В то время как агентства, часто предпочитают работать с отечественными компаниями, международное сотрудничество - это не редкость, как показало использование Canadarm. НАСА заказала устройство, которое можно использовать для управления Трансферт для полезных нагрузок и потенциально использовать для других видов деятельности в космосе, когда требуется, захватить и манипулировать объектами. На протяжении всего их развертывания, различные модели Canadarm никогда не подводили, хотя он были уничтожены в 2003 г, в. результате стихийных бедствий.

Впервые Canadarm использовался на борту шатла Колумбия в ходе миссии STS-2 в 1981 году. За время эксплуатации манипулятор Канадарм участвовал в 50 миссиях и совершил 7000 оборотов вокруг Земли, отработав без единого отказа. Манипулятор использовался для захвата телескопа Хаббл, перемещения и выгрузки более 200 т компонентов МКС и перемещения астронавтов.

Манипулятор располагался в грузовом отсеке шатла, управление осуществлялось дистанционно из кабины. Имеет 6 степеней свободы. Механизм захвата по принципу работы напоминает диафрагму фотоаппарата.


Характеристики:

Длина - 15,2 м (50 футов);

Диаметр - 38 см (15 дюймов);

Собственный вес - 410 кг (900 фунтов);

Вес в составе общей системы - 450 кг

Дистанционно-Управляемый Манипулятор (ДУМ) (RMS) «CANADARM» устанавливался на МТКК «Space Shuttle». Возможно установление двух рук ДУМ. Одновременно может работать только одна рука. Основное назначение ДУМ (RMS) - транспортные операции:

доставка объектов из ОПГ, размещение объектов в ОПГ, перемещение космонавтов, закреплённых в «Выносном Рабочем Месте» (ВРМ) к объекту в ОПГ;

обеспечение проведения технологических операций:

поддержание, закрепление, размещение инструмента и человека.

RMS Canadarm разработан и изготовлен фирмой “Spar Aerospace”. Разработка и изготовление первого образца - 70 млн. дол. Последующие 3 «руки» были изготовлены за 60 млн. дол. Всего изготовлено 5 (руки 201, 202, 301, 302 и 303) и переданы NASA. Рука 302 потеряна при катастрофе Challenger. Срок службы - 10 лет, 100 полётов.

Схема манипулятора RMS Canadarm представлена на Рис.2.

Конструкция

Белое покрытие конструкции, работающее как термостатирующее оборудование для поддержания необходимой температуры оборудования в условиях вакуума, предотвращает повышение температуры руки под солнечными лучами и проектирует от космического холода, когда рука находится в тени.

15.2 m (50 ft.)

Weight on Earth

410 kg (905 lbs.)

Speed of movement

Unloaded: 60 cm a second - loaded: 6 cm a second

Upper and lower arm booms

Carbon composite material

Three degrees of movement (pitch/yaw/roll)

One degree of movement (pitch)

Two degrees of movement (pitch/yaw)

Translational hand controller

Right, up, down forward, and backward movement of the arm

Rotational hand controller

Controls the pitch, roll, and yaw of the arm

Эксплуатация

Впервые Canadarm использовался на борту шаттла Колумбия в ходе миссии STS-2 <#"654688.files/image008.gif">

После аварии Space Shuttle "Columbia" (полёт STS-107 <#"654688.files/image009.gif">

Европейский манипулятор ERA.

Манипулятор “ KIBO

Схема японского модуля МКС JEM представлена на Рис.4. Физические параметры модуля представлены в Таблице 3.

Японский экспериментальный блок "Кибо", что значит надежда, является первой орбитальной лабораторий Японии. "Кибо" состоит из четырех модулей:

Научная лаборатория (РМ):

Это центральная часть блока, которая позволит проводить все виды экспериментов в условиях невесомости. Внутри модуля установлено 10 экспериментальных блоков. Сам модуль имеет размеры автобуса.

Экспериментальный багажный модуль (ELM-PS):

Он играет роль хранилища оборудования, в котором находятся перемещаемые контейнеры. Их можно перевозить на "космическом челноке".

Внешний грузовой блок (EF):

Он постоянно находится в открытом космосе. Использоваться он будет для утилизации отходов. В нем находятся заменяемые мусорные контейнеры, которые при наполнении выбрасываются.

Рука-манипулятор (JEM RMS):

Она будет обслуживать внешний грузовой блок. Основная часть руки переносит тяжелые объекты, а для деликатной работы используется малая съемная рука. Рука-манипулятор оснащена видеокамерой, которая позволяет точно управлять движениями руки.

Так же ко всем модулям будут прикреплены багажные блоки малых размеров.

Физические параметры:

Таблица 3.

Литература

1 http://www.myrobot.ru

http://www.dailytechinfo.org

http://ru.wikipedia.org

Интервью

21.09.2016 09:41

РОССИЙСКАЯ ГАЗЕТА. АЛЕКСАНДР ГРЕБЕНЩИКОВ. АВАТАР, Я ТЕБЯ ЗНАЮ!

Госкорпорация «РОСКОСМОС» выделит почти 2,5 миллиарда рублей на создание роботов для работы в открытом космосе. Какие «механические космонавты» нужны за бортом космической станции? Через какие испытания проходят «киберы» прежде чем получить допуск на орбиту? Какой российский робот-геолог спроектирован для Марса? Об этом «РГ» рассказывает начальник лаборатории космической робототехники Центрального научно-исследовательского института машиностроения (ЦНИИмаш) Александр ГРЕБЕНЩИКОВ.

- Александр Владимирович, так какие роботы требуются для работы в открытом космосе?

Это на первых порах роботы для операционной поддержки внекорабельной деятельности космонавтов. То есть помощники. А затем роботы, которые будут «самостоятельно» выполнять обслуживание оборудования и узлов на внешних поверхностях станции. Например, визуальную инспекцию, технологические и ремонтные операции, обслуживание научных приборов и т.д.

- Основные требования, которые предъявляются к киберкосмонавтам?

Главное - обеспечить безопасность находящихся рядом людей и самого объекта - станции или корабля. То есть действия роботов не должны привести к аварийным или нештатным ситуациям. Второе - это эффективный функционал робота. И третье - его высокая надежность и стойкость к вредным факторам космоса.

Роботы-аватары будут наиболее универсальными машинами для сложных операций на Луне и других планетах. А какие преимущества они открывают?

Два неоспоримых: снижение рисков для жизни и здоровья экипажа при работе в открытом космосе, а также сокращение затрат. Могу сказать, что каждый час работы космонавтов за бортом обходится, по разным оценкам, от 2 до 4 млн долларов. Цифры говорят сами за себя. Кроме того, использование в будущем роботов для выполнения рутинных операций на обитаемых станциях позволит высвободить дополнительное время экипажа для отдыха или решения других актуальных задач.

Насколько я знаю, в России уже разработана первая робосистема, которая будет помогать космонавтам в открытом космосе? Или, точнее, прототип?

Да, проектные разработки ведутся уже три года. По исходным данным ЦНИИмаша предприятие «Андроидная техника» изготовило наземный прототип космического робота-андроида SAR-401. В конце 2014 года в ЦПК им. Ю.А. Гагарина были проведены его функциональные испытания. Робот в дистанционном режиме под управлением оператора успешно выполнял типовые операции: переключал тумблеры, захватывал инструменты, работал с механическими замками, электрическими разъемами, инспектировал поверхность с помощью телекамер, подсвечивал рабочую зону космонавтов, опускал и поднимал забрало шлема скафандра, протирал стекла иллюминатора.

Позже были разработаны эскизные проекты робототехнической транспортно-манипуляционной системы для поддержки внекорабельной деятельности, а также антропоморфного робота «Андронавт». Разработаны макетные образцы, проведены их лабораторные испытания.

Как выглядит российский космический робонавт? Через какие испытания он должен пройти прежде чем отправиться на орбиту?

Что касается робота SAR-401, то он напоминает человека. Но пока без ног: перемещать его вдоль космической станции целесообразнее с помощью транспортного манипулятора. Его «руки» и «пальцы» имеют такие же размеры и степени подвижности, как у человека, а управление осуществляется с помощью экзоскелета, надеваемого на оператора. Робот в точности повторяет все движения оператора, который дистанционно контролирует работу с помощью шлема виртуальной реальности в стереоизображении. Оно транслируется телекамерами, размещенными внутри «головы» робота.

Прежде чем отправиться на орбиту робот должен пройти целый ряд серьезных испытаний: термовакуумные, на вибропрочность и радиационную стойкость, электромагнитную совместимость и многие другие.

- Единство формы и содержания тут важны? В каком направлении движется конструкторская мысль?

Что касается андроидного робота, то несомненно. Конструктивно он должен быть полностью кинематически подобен человеку. Только тогда он сможет выполнять «тонкие» операции, свойственные моторике рук и пальцев человека. Кроме того, человекоподобный вид робота больше подходит и для выполнения функции психологической поддержки космонавтов.

Космические роботы-пауки, роботы-змеи, роботы-обезьяны и т.д. - это полет фантазии конструкторов? Или такие формы обусловлены необходимостью?

В ряде случаев такие формы обусловлены необходимостью. Например, для лазанья по крутым и сыпучим склонам кратеров больше подходят паукообразные роботы. Они более устойчивы и могут выйти с помощью ног-манипуляторов даже из перевернутого положения. А вот для движения внутри узких лабиринтов или труб - змееобразные.

- Какие материалы разрабатываются для защиты роботов от радиации, микрочастиц и микрометеоритов?

Электронную «начинку» робота от микрочастиц защищает его корпус. Он изготавливается из традиционных космических материалов: алюминиевых сплавов, титана, композитов. В составе мехатронных и электронных систем робота будут использоваться радиационно-стойкие компоненты и электрорадиоизделия, а также применяться методы резервирования критичных узлов и систем.

Многие ученые утверждают: в космосе должны работать только автоматы, совершенно незачем рисковать человеком. Но вот один из космонавтов как-то рассказал: «При выходе в открытый космос требовалось что-то заменить. ЦУП говорит: «Возьми ключ на 14». Я взял, а когда подошел к системе, понял: ключ другой должен быть. Робот выполнил бы мое задание с ключом на 14? Нет. А я выполнил». Получается, роботы могут не все?

Действительно, пока не могут быть созданы роботы с развитым искусственным интеллектом, полностью заменяющие человека во всех ситуациях в космосе. Да и не только там. Тем не менее во многих случаях роботам в космосе нет альтернативы. Это касается выполнения таких опасных и трудоемких работ, как, например, обслуживание в ближайшем будущем космических ядерных энергоустановок, выполнение строительно-монтажных работ по созданию лунных и напланетных баз, исследования астероидов и удаленных планет. Но при этом роботы будут управляться или контролироваться человеком. Поэтому сейчас ведутся активные работы в направлении совершенствования интерфейсов «робот-человек», а также адаптивного автономного поведения роботов, группового взаимодействия роботов между собой.

- Какое космическое будущее ждет роботов-аватаров? Трудно ими управлять?

Роботы-аватары, т.е. человекоподобные роботы (андроиды), управляемые человеком и копирующие его движения, будут в перспективе наиболее универсальными машинами для выполнения сложных операций на космических объектах в околоземном космосе, на Луне и других планетах. Методы управления андроидами сейчас активно развиваются. И управление андроидами, конечно же, требует определенной подготовки.

Почему ученые говорят, что аватары смогут работать только вблизи Земли. Например, на Луне или космических станциях? Из-за задержки в сигнале?

Это общая проблема удаленного телеоператорного управления. При задержке сигналов обратной связи более двух секунд может произойти рассогласование в действиях человека-оператора и робота. А это срыв задания. Вблизи Земли (при условии прямой радиовидимости) задержки сигналов управления относительно невелики - менее 0,2 секунды.

Что касается Луны, том там суммарная задержка (туда и обратно) составляет уже более 2,5 секунды. Это вызывало, например, трудности в управлении советским луноходом. Поэтому аватарами на Луне лучше управлять с окололунной орбитальной станции или из гермоотсеков лунной базы. А также использовать методы супервизорного управления с элементами искусственного интеллекта, включая распознавание образов, автономную навигацию и принятие решений.

- Что сейчас с российскими роботами SAR-401 и «Андронавт»? Когда они могут отправиться на работу в космос?

На базе SAR-401 в рамках космического эксперимента «Теледроид» будет изготовлен летный образец, который в 2020 году доставят на МКС. На новом научно-энергетическом модуле российского сегмента он под управлением космонавта будет выполнять операции внекорабельной деятельности. Что касается «Андронавта», то эта система, скорее всего, будет развиваться в качестве средства психологической и информационной поддержки космонавта внутри орбитальной станции. Наподобие японского гуманоидного робота Kirobo.

- А какие роботы сейчас находятся на МКС?

На внешней поверхности МКС - космический манипулятор Canadarm2 с «насадкой» Dextre, японский манипулятор JEMRMS для обслуживания негерметичной платформы EF модуля «Кибо», два российских механических грузовых манипулятора «Стрела». Внутри МКС находятся американский робот-андроид Robonaut R2 и японский «робот-кукла» Kirobo.

Американцы пророчат большое будущее паукообразным роботам SpiderFab, которые займутся постройкой космических домов. Что это за система?

SpiderFab будет использоваться для постройки космических сооружений. Тут две основные технологии. Прежде всего устройство под названием Trusselator, которое сейчас успешно проходит испытания в лаборатории: это своеобразный синтез 3D-принтера и вязальной машины. На одной стороне цилиндрического корпуса расположена катушка с нитью (в качестве сырья устройство использует углеволокно), а на другом находится экструдер, через который выдавливаются три основные трубы будущей фермы. Ферма усиливается путем обмотки нитью. В итоге устройство длиной около метра может создать ферму длиной в десятки метров.

Далее устройство под названием робот-Trusselator с помощью манипулятора и специального сварочного аппарата сможет соединять исходные фермы в большие сложные конструкции и покрывать их солнечными панелями, светоотражающей пленкой и выполнять другие операции в зависимости от целей миссии.

Вообще технология SpiderFab позволит перейти к изготовлению комических конструкций длиной в километры! В настоящее время конструкции, которые отправляются в космос, имеют огромный избыточный запас прочности для того, чтобы выдержать перегрузки при старте. Обычно в космосе такие сверхпрочные конструкции не нужны, зато нужен очень большой размер, например для телескопов-интерферометров. Аппараты SpiderFab позволят строить именно такие конструкции: легкие, крупногабаритные и с низкой стоимостью жизненного цикла.

Надо сказать, что идея создания в космосе крупногабаритных ферм большой длины прорабатывалась советскими учеными еще в конце 80-х годов прошлого века. Для этого в ЦНИИмаш предполагалось использовать фермосборочный агрегат на базе космического аппарата с двумя программными манипуляторами, который собирал бы в программном режиме ферму из типовых углепластиковых стержней, стыкуя их к узловым элементам. Стержни и элементы доставались из кассетного хранилища на борту аппарата. Каждый стержень снабжен с обоих концов специально разработанными магнитомеханическими самозатягивающимися безлюфтовыми замками. Теми же манипуляторами после сборки каждой секции вся ферма по роликовым направляющим задвигалась назад, внутрь полого фермосборочного агрегата, освобождая пространство для наращивания следующей секции фермы.

Были изготовлены магнитомеханические замки, стержневые элементы, узлы, и отработаны на масштабных макетах процессы роботизированной сборки секций фермы с помощью советских промышленных роботов РМ-01. Как видим, технология SpiderFab - это фактически возрождение известной идеи на новом технологическом уровне с использованием 3D-печати.

- А что за космическую роботизированную перчатку разработали американцы? У нас что-то подобное есть?

Перчатка RoboGlove предназначалась для увеличения силы захвата человека в космосе. При ее создании использовались технологии, применяемые в разработке человекоподобного робота Robonaut. НАСА заявляло, что при использовании такой перчатки можно снизить нагрузку на мышцы человека более чем в два раза. В России подобные перчатки в отдельности не разрабатывались, а в проводимых исследованиях внимание уделялось силовому экзоскелету.

Недавно видела видео: будущий уборщик космического мусора, разрабатываемый ЕКА, учится ловить дроны. Интересно. А что предлагают для решения этой проблемы российские робототехники?

В России сейчас проводятся научно-исследовательские работы, посвященные проблемам обслуживания космических объектов, включая проблему утилизации космического мусора. Ведутся проектно-поисковые исследования, в том числе по разработке космических аппаратов с манипуляторами для захвата отработавших спутников, их фрагментов, и последующего увода их на специальную так называемую орбиту захоронения или в атмосферу Земли, где они будут сгорать при падении.

- Робот по ремонту спутников - это фантастика или реальность?

Сегодня это уже не фантастика, но пока еще и не реальность. И за рубежом, и у нас идут научно-исследовательские работы, направленные на решение этой актуальной проблемы. Ремонт в космосе дорогостоящих спутников позволит увеличить срок их активного существования, сократив тем самым затраты на поддержание необходимого состава спутниковых группировок. Но для этого надо менять идеологию создания самих спутников и космических аппаратов, делать

их ремонтопригодными хотя бы на уровне замены типовых унифицированных элементов и блоков. И эта задача должна решаться конструкторами новых перспективных спутников и космических аппаратов.

Есть ли в планах российских конструкторов разработка новых роверов для Марса? Скажем, американцы тут делают ставку на «Валькирии», которые, как утверждается, по своим возможностям гораздо более продвинуты, чем «Кьюриосити». А что у нас?

В России разработан проектный облик универсальной самоходной платформы «Робот-геолог». Она будет оснащена манипулятором, каротажно-буровой установкой и всем комплексом научных приборов, которые необходимы для проведения геологических и геофизических исследований на поверхности Луны и Марса. Включая сейморазведку с помощью серии взрывов, забор и доставку стратифицированных колонок грунта с глубины до 3 м на маршруте длиной до 400 км и др. Разработка позволяет вплотную перейти к опытно-конструкторским работам по созданию такого ровера, по своему функционалу не уступающего «Кьюриосити».

Визитная карточка

ГРЕБЕНЩИКОВ Александр Владимирович, родился в 1958 году. Образование высшее, в 1981 году окончил радиотехнический факультет Московского энергетического института. Космической робототехникой профессионально занимается с 1986 года, работая в головном научном институте РОСКОСМОСА ФГУП ЦНИИмаш. Начальник лаборатории космической робототехники ФГУП ЦНИИмаш, эксперт Экспертного совета Национального центра развития технологий и базовых элементов робототехники Фонда Перспективных Исследований Российской Федерации.

Текст: Наталия Ячменникова

Российская газета - Федеральный выпуск №7080 (212)

Средства обеспечения работ с полезным грузом: с истема бортовых манипуляторов "Аист"

Манипулятор для космического корабля "Буран" был разработан в Государственном научном центре - Центральном научно-исследовательском и опытно-конструкторском институте робототехники и технической кибернетики (ГНЦ ЦНИИ РТК РФ) (Санкт-Петербург). Это учреждение было организовано в конце 1960-х годов на основе Опытного конструкторского бюро технической кибернетики.

Для проведения испытаний в институте создали уникальный стенд (фото справа). Манипулятор, предназначенный для работы в открытом космосе, размещают на платформу, опирающуюся на воздушную подушку. Подобным образом проверяют и отрабатывают перемещение различных грузов в условиях искусственной невесомости. Манипулятор общей длиной (в "вытянутом" транспортном положении) 15 метров действует в трех плоскостях и имеет шесть вращательных степеней свободы. Система бортовых манипуляторов (СБМ) орбитального корабля состоит из двух манипуляторов весом по 360 кг - основного и резервного. На конце каждого манипулятора смонтирован захват, которым удерживается и перемещается полезный груз, при этом за ходом операции оператор наблюдает с помощью двух независимых телекамер, поворачивающихся в двух плоскостях, а прожектор освещает захват и нужное место на наружной поверхности космического аппарата или орбитальной станции.

Бурановский манипулятор имеет кинематическую схему, сходную с манипулятором Space Shuttle (RMS). Кроме шестивращательных степеней подвижности, он имеет одну транспортную степень (для начальной установки в грузовом отсеке корабля при закрытых створках грузового отсека). Звенья манипулятора ("плечо" и "локоть") выполнены шарнирно-стержневыми из легких, но прочных композиционных материалов (углепластика), которые приспособлены для космических условий с резким перепадом температур.

Управление манипулятором осуществляется через коммутатор, связанный с приводами звеньев и бортовым цифровым вычислительным комплексом (БЦВК) , что позволяет использовать несколько режимов управления.

В режиме ручного управления действиями манипулятора руководит оператор с помощью двух рукояток на пульте управления манипуляторами, расположенном на задней стенке в командном отсеке кабины корабля . Одна рукоятка обеспечивает перемещение собственно манипулятора, а другая связана непосредственно с захватами. Контроль за операцией оператор осуществляет с помощью уже упомянутой выносной телевизионной системы.

В автоматическом режиме управления манипулятор действует по заложенной в БЦВК программе. При этом БЦВК осуществляет связь манипулятора с оборудованием, размещенным вне корабля, рассчитывает оптимальную траекторию и требуемую скорость перемещения захватов с грузом, непрерывно контролируя работу всей системы, и при необходимости, внося необходимые коррективы.

В режиме целеуказания манипулятор может самостоятельно переместить захваты с полезным грузом в заранее заданную точку пространства.

Предусмотрен и резервный режим работы, при котором управляющие команды поступают на каждый шарнир манипулятора.

В отличие от своего американского аналога RMS , манипулятор "Бурана" имеет одну принципиальную особенность - он может управляться не только с борта орбитального корабля, но и с Земли. В этом случае в процессе работы из космоса напрямую в наземный Центр управления полетом (ЦУП) "сбрасывается" большой объем телеметрической информации, которая мгновенно анализируется, обрабатывается и полученные команды столь же быстро отправляются на орбиту и поступают в блок памяти БЦВК , откуда они передаются на манипулятор. Таким образом, оператор, находящийся в ЦУПе, сможет производить работы в открытом космосе с борта корабля, выполняющего непилотируемый автоматический полет.

Технические характеристики

Число степеней свободы 6 вращательных
Грузоподемность, т 30
Рабочая зона сфера радиусом 15,5 м
Максимальная скорость, см/ сек:
с грузом
без груза

10
30
Точность позиционирования, см 3

Что же касается программ, помещаемых в блоках памяти БЦВК , то разработчики предусмотрели их хранение в основном и дополнительных блоках. Такое решение позволяет гибко планировать программу полета в зависимости от наличия или отсутствия экипажа на борту корабля.

В связи с закрытием программы "Энергия-Буран" манипулятор орбитального корабля так и не был испытан в условиях космического полета (в первом и единственном полете "Бурана" он не устанавливался, а второй полет в декабре 1991 г. , в котором предусматривалось его испытание, так и не состоялся), однако проведенное наземное натурное и компьютерное моделирование позволило определить следующие особенности его движения:

Д вижение пустого схвата сопровождается колебаниями с амплитудой 7-10 см и частотой 0.5-1 Гц;

П ри работе с грузом около 1 т амплитуда колебаний схвата за счет суммарной упругости (основная упругость сосредоточена в шарнирах и в схвате в месте крепления груза) составила 50 см;

- остановка груза весом 1.5 т и 6 т сопровождается колебательным переходным процессом со временем затухания порядка 2 и 4 минут соответственно.

Крепление бортового манипулятора:

Московский Авиационный Институт

(Национальный исследовательский университет)


Технология изготовления деталей

Реферат на тему:

Космические манипуляторы


Выполнил ст. гр. 06-314

Зверев М.А.

Проверил:

Береговой В.Г.


Москва 2013

Манипуляторы модулей ДОК «Мир»


На долговременном орбитальном комплексе (станции) (ДОК) «Мир» в составе модулей использовались манипуляторы, как на сменных модулях, так и на базовом блоке. Эти манипуляторы отличались по своим задачам и исполнению.

На модулях «Квант-2», «Спектр», «Кристалл» и «Природа» на их внешних поверхностях вблизи основного стыковочного узла был смонтирован манипулятор. Основная задача этого М заключалась в том, чтобы после стыковки с базовым блоком (к продольному стыковочному узлу ПхО) произвести перестыковку модуля на другой стыковочный узел, ось которого лежала в плоскостях стабилизации I-III. II-IV. Этот же манипулятор использовался для перестыковки модулей в процессе эксплуатации комплекса. Для этих операций на внешней сферической поверхности ПхО между плоскостями стабилизации под сферическим углом 450 были установлены 2 специальных стыковочных узла, к которым и пристыковывался манипулятор модуля. После стыковки с этим узлом модуль отстыковывался от продольного стыковочного узла и перемещался к ближайшему свободному «перпендикулярному» стыковочному узлу, условно к I- II или III-IV. Этот манипулятор следует отнести к классу транспортных (транспортирующих), работающих по программе «точка-точка».


Манипуляторы базового блока («Стрела»)


К классу транспортирующих манипуляторов можно отнести и «грузовую систему» «Стрела», установленную на базовом блоке комплекса. Данная система предназначалась для транспортировки грузов из модулей на поверхность базового блока. После того, как была сформирована конструкция ДОК в виде «звезды», все выходные люки ПхО оказались заняты и необходимое оборудование можно было, доставлять только из вторых торцевых люков модулей. Для облегчения работы экипажа на поверхности ДОК и были установлены две «Стрелы», на II и IV плоскостях стабилизации на местах крепления головного обтекателя. На Рис.1. перечислены работы, при выполнении которых потребовалась помощь данного манипулятора.



Схема и фотография «Стрелы» представлены на Рис.1.



Отечественные механические манипуляторы «Стрела », выполненные в виде телескопической штанги разворачиваемой вокруг двух осей, используют на МКС для перемещения космонавтов по внешней поверхности станции. Краны установлены на модуле "Пирс" <#"center">Манипулятор Буран


Для проведения испытаний в институте создали уникальный стенд. Манипулятор, предназначенный для работы в открытом космосе, размещают на платформу, опирающуюся на воздушную подушку. Подобным образом проверяют и отрабатывают перемещение различных грузов в условиях искусственной невесомости. Манипулятор общей длиной (в "вытянутом" транспортном положении) 15 м действует в трех плоскостях и имеет 6 вращательных степеней свободы. Система бортовых манипуляторов орбитального (СБМ) корабля состоит из двух манипуляторов весом по 360 кг - основного и резервного. На конце каждого манипулятора смонтирован захват, которым удерживается и перемещается полезный груз, при этом за ходом операции оператор наблюдает с помощью двух независимых телекамер, поворачивающихся в двух плоскостях, а прожектор освещает захват и нужное место на наружной поверхности космического аппарата или орбитальной станции. Бурановский манипулятор имеет кинематическую схему, сходную с манипулятором Space Shuttle (RMS). Кроме шести вращательных степеней подвижности он имеет одну транспортную степень (для начальной установки в грузовом отсеке корабля при закрытых створках грузового отсека). Звенья манипулятора ("плечо" и "локоть") выполнены шарнирно-стержневыми из легких, но прочных композиционных материалов (углепластика), которые приспособлены для космических условий с резким перепадом температур.

Управление манипулятором осуществляется через коммутатор, связанный с приводами звеньев и бортовым цифровым вычислительным комплексом (БЦВК), что позволяет использовать несколько режимов управления. В режиме ручного управления действиями манипулятора руководит оператор с помощью двух рукояток на пульте управления манипуляторами, расположенном на задней стенке в командном отсеке кабины корабля. Одна рукоятка обеспечивает перемещение собственно манипулятора, а другая связана непосредственно с захватами. Контроль за операцией оператор осуществляет с помощью уже упомянутой выносной телевизионной системы.

В автоматическом режиме управления манипулятор действует по заложенной в БЦВК программе. При этом БЦВК осуществляет связь манипулятора с оборудованием, размещенным вне корабля, рассчитывает оптимальную траекторию и требуемую скорость перемещения захватов с грузом, непрерывно контролируя работу всей системы, и при необходимости, внося необходимые коррективы. В режиме целее указания манипулятор может самостоятельно переместить захваты с полезным грузом в заранее заданную точку пространства. Предусмотрен и резервный режим работы, при котором управляющие команды поступают на каждый шарнир манипулятора. В отличие от своего американского аналога RMS, манипулятор "Бурана" имеет одну принципиальную особенность - он может управляться не только с борта орбитального корабля, но и с Земли. В этом случае в процессе работы из космоса напрямую в наземный Центр управления полетом (ЦУП) "сбрасывается" большой объем телеметрической информации, которая мгновенно анализируется, обрабатывается и полученные команды столь же быстро отправляются на орбиту и поступают в блок памяти БЦВК, откуда они передаются на манипулятор. Таким образом, оператор, находящийся в ЦУПе, сможет производить работы в открытом космосе с борта корабля, выполняющего непилотируемый автоматический полет.


Технические характеристики манипулятора. Число степеней свободы6 вращательныхГрузоподъемность, т30Рабочая зонасфера радиусом 15,5 мМаксимальная скорость, см/сек: с грузом без груза 10 30Точность позиционирования, см3

Что же касается программ, помещаемых в блоках памяти БЦВК, то разработчики предусмотрели их хранение в основном и дополнительных блоках. Такое решение позволяет гибко планировать программу полета в зависимости от наличия или отсутствия экипажа на борту корабля. В связи с закрытием программы манипулятор "Бурана" так и не был испытан в условиях космического полета (в первом и единственном полете "Бурана" он не устанавливался, а второй полет в декабре 1991 г., в котором предусматривалось его испытание, так и не состоялся) однако проведенное наземное натурное и компьютерное моделирование позволило определить следующие особенности его движения:

·Движение пустого захвата сопровождается колебаниями с амплитудой 7-10 см и частотой 0.5-1 Гц.

·При работе с грузом около 1 т амплитуда колебаний захвата за счет суммарной упругости (основная упругость сосредоточена в шарнирах и в захвате в месте крепления груза) составила 50 см.

·Остановка груза весом 1.5 т и 6 т сопровождается колебательным переходным процессом со временем затухания порядка 2 и 4 минут соответственно.


<#"justify">На фотографии видно, что манипулятор установлен по правому борту корабля и фиксируется в транспортном положении тремя узлами, поддерживающими манипулятор в подвижных сочленениях звеньев.


Манипулятор Декстор


Американский шатал Endeavour стартовал, 11 марта к Международной космической станции с космодрома на мысе Канавералл. Главное задание полета Endeavour - доставка на МКС жилищного модуля и робота, который может выполнять задание в открытом космосе. В состав экипажа космического корабля входят семеро астронавтов. Вскоре после старта космонавты получили тревожные сигналы от рулевых двигателей корабля, затем по неясной пока причине пришлось перейти на резервную систему охлаждения. По оценке руководителей НАСА, эти проблемы не должны сказаться на программе полета. Шатл Endeavour доставит на Международную космическую станцию первый из трех компонентов японского жилого модуля "Кибо" и канадский высокоточный робот-манипулятор Декстр (Dextre), стоимостью более $200 млн., который имеет две роботизированные руки для работы на внешней поверхности МКС.

Декстр выглядит как безголовое туловище, оснащенное двумя крайне подвижными руками длиной в 3,35 м. Трёх с половиной метровый корпус имеет ось вращения в «талии». Корпус с одного конца оборудован захватывающим приспособлением, за который его может ухватить Канадарм 2 и перенести SPDM к любому орбитальному заменяемому элементу (англ. ORU) на станции. С другого конца корпуса имеется исполнительный орган робота, фактически идентичный органу Канадрам», так что SPDM может быть закреплён на захватывающих приспособлениях МКС или может использоваться для того чтобы расширять функциональность Кандарм2.

Обе руки SPDM имеют семь суставов, что даёт им такую же гибкость, как у Канадарм 2, в сочетании с большей точностью. В конце каждой руки находится система, названная Orbital Replacement Unit/Tool Changeout Mechanism (OTCM) (по русским: Орбитальный заменяемый элемент/Механизм замены инструментов. В неё входят встроенные цепкие захваты, выдвижная головка, монохромная телевизионная камера, подсветка, и разделяемый соединитель, который обеспечивает питание, обмен данными и видеонаблюдение за полезным грузом.

Внизу корпуса Декстра находится пара ориентируемых телекамер цветного изображения с подсветкой, платформа для хранения ORU и кобура для инструментов. Кобура оборудована тремя различными инструментами, используемыми для решения различных задач на МКС.


Манипулятор Канадарм

был роботом-манипулятором, изначально предназначенным для использования на борту космического корабля. Canadarm был введён в эксплуатацию в 1975 году и впервые запущен в 1981 году, он был важным техническим развитием в истории пилотируемых космических полетов. Canadarm продемонстрировал потенциальные возможности применения робототехнических устройств в пространстве, а также прочно вошёл в инжиниринг в космических исследованиях. Несколько итераций устройства были изготовлены для использования на борту различных миссий.состоит из длинных петель - рук, контролируемых robotically из кабины. Canadarm официально известен, как поворотная дистанционная система манипулятора (SRM),и она предназначена для астронавтов для перемещения полезной нагрузки в или из космического корабля. Она также может быть использована и для других задач, начиная от ремонта телескопа Хаббл для сборки Международной Космической Станции (МКС). Второе поколение устройств, Canadarm-2?, было установлено на МКС.

Опытно-конструкторские работы по различным аспектам космических полетов, могут заключить договор с агентствами, такими как Национальное управление по аэронавтике и исследованию космического Пространства (НАСА). В то время как агентства, часто предпочитают работать с отечественными компаниями, международное сотрудничество - это не редкость, как показало использование Canadarm. НАСА заказала устройство, которое можно использовать для управления Трансферт для полезных нагрузок и потенциально использовать для других видов деятельности в космосе, когда требуется, захватить и манипулировать объектами. На протяжении всего их развертывания, различные модели Canadarm никогда не подводили, хотя он были уничтожены в 2003 г, в. результате стихийных бедствий.

Впервые Canadarm использовался на борту шатла Колумбия в ходе миссии STS-2 в 1981 году. За время эксплуатации манипулятор Канадарм участвовал в 50 миссиях и совершил 7000 оборотов вокруг Земли, отработав без единого отказа. Манипулятор использовался для захвата телескопа Хаббл, перемещения и выгрузки более 200 т компонентов МКС и перемещения астронавтов.

Манипулятор располагался в грузовом отсеке шатла, управление осуществлялось дистанционно из кабины. Имеет 6 степеней свободы. Механизм захвата по принципу работы напоминает диафрагму фотоаппарата.


Характеристики:

Длина - 15,2 м (50 футов);

Диаметр - 38 см (15 дюймов);

Собственный вес - 410 кг (900 фунтов);

Вес в составе общей системы - 450 кг

Дистанционно-Управляемый Манипулятор (ДУМ) (RMS) «CANADARM» устанавливался на МТКК «Space Shuttle». Возможно установление двух рук ДУМ. Одновременно может работать только одна рука. Основное назначение ДУМ (RMS) - транспортные операции:

доставка объектов из ОПГ, размещение объектов в ОПГ, перемещение космонавтов, закреплённых в «Выносном Рабочем Месте» (ВРМ) к объекту в ОПГ;

обеспечение проведения технологических операций:

поддержание, закрепление, размещение инструмента и человека.

RMS Canadarm разработан и изготовлен фирмой Spar Aerospace. Разработка и изготовление первого образца - 70 млн. дол. Последующие 3 «руки» были изготовлены за 60 млн. дол. Всего изготовлено 5 (руки 201, 202, 301, 302 и 303) и переданы NASA. Рука 302 потеряна при катастрофе Challenger. Срок службы - 10 лет, 100 полётов.

Схема манипулятора RMS Canadarm представлена на Рис.2.


Конструкция


Белое покрытие конструкции, работающее как термостатирующее оборудование для поддержания необходимой температуры оборудования в условиях вакуума, предотвращает повышение температуры руки под солнечными лучами и проектирует от космического холода, когда рука находится в тени.


Length15.2 m (50 ft.)Diameter38 cm (15 in.)Weight on Earth410 kg (905 lbs.)Speed of movement- unloaded: 60 cm a second - loaded: 6 cm a secondUpper and lower arm boomsCarbon composite materialWrist jointThree degrees of movement (pitch/yaw/roll)Elbow jointOne degree of movement (pitch)Shoulder jointTwo degrees of movement (pitch/yaw)Translational hand controllerRight, up, down forward, and backward movement of the armRotational hand controllerControls the pitch, roll, and yaw of the armЭксплуатация


Впервые Canadarm использовался на борту шаттла Колумбия в ходе миссии STS-2 <#"justify">


STS-107 <#"center">Общая информация


Манипулятор для осмотра ТЗП шаттла.


После аварии Space Shuttle "Columbia" (полёт STS-107 <#"center">Общая информация


Инспекционная Штанга базировалась на уже существующих решениях, разработанных по программе Canadarm, и имеет, по существу, тот же дизайн, за исключением того, что суставы руки были заменены на алюминиевые переходники, эффективно закрепляющие переходники в ложементах. Наконечник стрелы был предназначен для размещения и интерфейса с набором датчиков для оценки системы тепловой защиты шаттла.

Весящая 211 килограммов (без датчиков), и около 15 метров в длину, IBA была приблизительно таких же размеров, что и Canadarm шаттла. Таким образом, IBA разместился на борту корабля, где первоначально должен был устанавливаться «Холдинг механизм» второй руки. На орбите, Canadarm шаттла и Canadarm2 " МКС " будут забирать IBA с помощью грейфера

Манипулятор ERA.

В 2014 году на российском сегменте МКС планируется установить европейский манипулятор ERA (European Robotic Arm) более короткий и слабый, но более аккуратный манипулятор (точность позиционирования - 3 миллиметра), способный работать в полуавтоматическом режиме без постоянного управления космонавтами (Рис.3), который предполагается использовать для перестыковки модулей станции и обслуживания шлюзовой камеры. Манипулятор представляет из себя симметричный 4-х звенник, состоящий из двух «Больших» и двух «малых» звеньев. На обоих малым звеньях установлены захваты, аналогичные захватам Canadarm2, что позволяет пристыковывать ERA любым из малых звеньев.


Европейский манипулятор ERA.


Манипулятор KIBO


Схема японского модуля МКС JEM представлена на Рис.4. Физические параметры модуля представлены в Таблице 3.

Японский экспериментальный блок "Кибо", что значит надежда, является первой орбитальной лабораторий Японии. "Кибо" состоит из четырех модулей:

Научная лаборатория (РМ):

Это центральная часть блока, которая позволит проводить все виды экспериментов в условиях невесомости. Внутри модуля установлено 10 экспериментальных блоков. Сам модуль имеет размеры автобуса.

Экспериментальный багажный модуль (ELM-PS):

Он играет роль хранилища оборудования, в котором находятся перемещаемые контейнеры. Их можно перевозить на "космическом челноке".

Внешний грузовой блок (EF):

Он постоянно находится в открытом космосе. Использоваться он будет для утилизации отходов. В нем находятся заменяемые мусорные контейнеры, которые при наполнении выбрасываются.

Рука-манипулятор (JEM RMS):

Она будет обслуживать внешний грузовой блок. Основная часть руки переносит тяжелые объекты, а для деликатной работы используется малая съемная рука. Рука-манипулятор оснащена видеокамерой, которая позволяет точно управлять движениями руки.

Так же ко всем модулям будут прикреплены багажные блоки малых размеров.



Физические параметры:

Таблица 3.

ПараметрыРМELM-PSформа:ЦилиндрическаяЦилиндрическаявнешний диаметр4,4 м.4,4 м.внутренний диаметр4,2 м.4,2 м.длина11,2 м.4,2 м.масса15,9 т.4,2 т.Число эксп. Блоков238мощность элем. Питания25 кВт. 120 В.-вместимость чел.Норм.-2; max.-4-период функционирования10 лет.10 лет.Литература


1 http://www.myrobot.ru

http://www.dailytechinfo.org

http://ru.wikipedia.org